
J
H
E
P
0
5
(
2
0
0
8
)
0
0
3

Published by Institute of Physics Publishing for SISSA

Received: April 18, 2008

Accepted: April 24, 2008

Published: May 2, 2008

Black holes and quantum gravity at the LHC

Patrick Meade and Lisa Randall

Jefferson Physical Laboratory, Harvard University,

Cambridge, MA 02138, U.S.A.

E-mail: meade@physics.harvard.edu, randall@physics.harvard.edu

Abstract: We argue that the highly studied black hole signatures based on thermal

multiparticle final states are very unlikely and only occur in a very limited parameter

regime if at all. However, we show that if the higher-dimensional quantum gravity scale

is low, it should be possible to study quantum gravity in the context of higher dimensions

through detailed compositeness-type searches.

Keywords: Large Extra Dimensions, Models of Quantum Gravity, Beyond Standard

Model, Technicolor and Composite Models.

mailto:meade@physics.harvard.edu
mailto:randall@physics.harvard.edu
http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


J
H
E
P
0
5
(
2
0
0
8
)
0
0
3

Contents

1. Introduction 1

2. Black hole production and decay 3

2.1 Criteria for black holes 3

2.2 Thermality 6

2.3 Inelasticity 10

3. Black hole decays 12

4. Two body final states 14

4.1 Quantum gravity and 2→2 scattering 16

4.1.1 Dijet “black holes” 17

4.1.2 Stringy behavior 19

4.1.3 Higher-dimension operators 22

4.2 Leptonic final states 24

5. Conclusions 26

A. RS black holes 27

B. Existing constraints on the quantum gravity scale 31

1. Introduction

One of the most exciting possibilities for the LHC is the discovery of small higher-

dimensional [1] black holes that could be formed when two sufficiently energetic particles

collide [2 – 5]. Ideally, such black holes would decay isotropically to many energetic parti-

cles, in keeping with the prediction of thermal Hawking radiation [6]. However, over most

of the viable parameter space, this expectation is not very realistic. Once inelasticity and

black hole entropy are accounted for, it is clear that multiparticle final states are very

suppressed, since only black holes produced well above threshold have sufficient entropy.

The falling parton distribution functions(PDFs) more than compensate for the rise in black

hole production with energy so most strong gravity events will occur at the lowest possible

energy scale.

Nonetheless, all is not lost. Even when the energy is too low to produce truly thermal

black holes, which require sufficiently high entropy and energy, we would nevertheless

expect signs of quantum gravity if higher dimensional gravity gets strong at a scale not too

far above a TeV. Strong gravity is likely to result in more spherical final states, even for
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those final states with low multiplicity, which would therefore be measured as much more

transverse than background. As we will show, over most regions of expected parameter

space for higher dimensional models, we expect a significant change in the rate of highly

transverse two particle final states to occur at the quantum gravity scale, both jet-like

and leptonic, although the latter rate which is smaller spans a smaller region of parameter

space. Strong gravity should be testable through standard compositeness tests.

In fact, the threshold for a rise in the 2→2 scattering cross section is almost inevitably

lower than the black hole production threshold. Though not necessarily a true thermal

black hole, these final states, if they occur, will nonetheless tell us about quantum gravity.

In fact, in the thermal regime, black holes wouldn’t give us any insight into quantum

gravity (except to confirm existing theoretical predictions). In the region at or below the

true thermal black hole threshold, assuming strong gravity effects don’t turn on or off

suddenly at the black hole scale, we could in principle learn a lot by studying the two

particle final states, in particular the angular distribution and the energy dependence of

the angular distribution which would truly be quantum gravity results, not interpretable

in terms of a classical calculation.

Furthermore we will see that there is sufficient information to distinguish not only

black hole type effects, but different forms of string amplitudes. This can in principle

probe the effects of curvature or non-string objects in the theory as well. Moreover, we

don’t expect only strong gravity effects if higher dimensional theories are right. We should

in that case find indications of KK final states at lower energy. In that case there would

be indications whether composite-type effects might be associated with quantum gravity

to help us disentangle it from other strongly interacting physics. In what follows, we will

see other possible distinctive features of gravitational physics that might help distinguish

among possibilities. Thus what we are saying is that even existing compositeness searches

don’t just tell about strong gauge dynamics-they could in principle tell us about gravity

as well. We show how we can hope to learn about black hole production and quantum

gravity by studying the energy dependence of the high pT dijet or leptonic cross section.

We consider the implications of a rise or fall in the cross section and what the energy

dependence might teach us about quantum gravity.

We stress that although the two particle final state signal is unlikely to probe thermal

black holes in the accessible energy range, it is of great interest as a way of probing quantum

gravity. The rate as a function of energy as well as the angular distribution can differ

significantly in various scenarios of quantum gravity. Furthermore in almost any scenario

we expect the two particle final state to demonstrate effects of quantum gravity well before

the proposed multiparticle final states characteristic of thermal black holes. Furthermore

whereas we know the predictions for the semiclassical regime, independent of the particular

theory of quantum gravity, the threshold regime can potentially distinguish among them.

Others have considered the effects of specific gravitational effects on higher-dimensional

operators and how they can be constrained by existing searches. ref. [7] considered a

dimension-8 operator, ref. [8] considered graviton loops generating a dimension-6 operator,

ref. [9, 10] considered string-generated dimension-8 operators and string resonances, ref. [11]

considered dimension-6 operators from string theory. Our point is to view compositeness
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searches more generally and to learn how to distinguish among the possibilities rather than

to constrain the scale of any one particular model. Furthermore we emphasize that the

gap between the quantum gravity scale and the true black hole threshold should be a good

source of deviations in 2→2 scattering and probably yields a much better reach and more

insight than multiparticle searches.

2. Black hole production and decay

The large black hole cross section estimate stems from the classical cross section that is

proportional to the geometrical area set by the Schwarzschild radius rS :

σ(E) ∼ πrS(E)2. (2.1)

This geometrical cross section implies

σ(E) ∼ 1

M2

(

E

M

)α

(2.2)

where M is the effective scale of quantum gravity and α ≤ 1 for higher-dimensional black

holes. Thus for instance at the LHC one might expect a parton-parton cross section of size

at least ∼ 1
M2 , which for M ∼ 1 TeV corresponds to an enormous rate of approximately 100

pb which for 100 fb−1 luminosity would yield ten million events. The basic reason why this

cross section is so large compared to the production of a particle with TeV mass in a typical

beyond the SM theory is the lack of any small couplings, such as gauge couplings in the

cross section and the absence of phase space suppression factors. However, this estimate

ignores several major considerations and uncertainties in the black hole production [3, 2]

and decay cross sections that we discuss in the rest of this section.

There have been relatively few studies of the phenomenological consequences of RS

black holes, and thus in addition to elaborating the points above we will also expand

further upon this case throughout the paper and in appendix A. Landsberg [12] discussed

RS black hole signatures, but used more optimistic assumptions for parameter space than

are now experimentally allowed and neglected the inelasticity that we will soon discuss.

ref. [13] considered black holes that might arise in warped five-dimensional space in the

context of cosmic ray searches. For further references see appendix A. We will see in

appendix A that in the energy range between M̃ and (M/k)2M̃ , where M is the five

dimensional Planck scale(M̃ is M reduced by a warp factor) and k is related to the AdS

curvature, we expect to a good approximation conventional five-dimensional black holes.

Of course, in the RS case where approximately flat space black holes occur only over a

limited energy range, we would need M/k large enough to permit high entropy black holes.

2.1 Criteria for black holes

The production cross section in (2.1) depends only on the mass scales involved and thus

appears to be a very simple quantity to understand. Unfortunately however there are

ambiguities associated with both of the two scales in the problem, M and MBH. Since one

makes rough estimates assuming black holes start forming at a scale M , and due to the
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Figure 1: Arbitrarily normalized parton-parton luminosity plot as a function of
√
ŝ to show the

relative contributions of initial state partons.

falling PDFs1 the rate changes dramatically depending on the scale at which black holes

start to form, it is critical to keep track of the different conventions for the Planck scale

and the relationships among them so that we can unambiguously compare rate predictions.

See figure 1 to see the different relative contributions to 2 → 2 scattering from the pdfs.

These will be helpful in understanding results throughout the paper.

Different authors have used different conventions for normalizing the Planck scale. We

define GD with the Myers-Perry convention [15]

1

16πGD

∫

dD+1x
√
gR (2.3)

and define LN as the normalization of the Einstein-Hilbert action for which (2.3) gives

1/16πGD . In the case of n extra dimensions, the PDG convention [17] is LN =

Mn+2
D /2(2π)n whereas the early analysis of Dimopoulos and Landsberg [2] used Mn+2

P /16π.

Although neither analysis was done for case of one extra dimension due to the constraints

on n = 1 ADD type set ups [16], there is a range of mass scales for which approximate

five-dimensional flat space black holes would be the most appropriate description for RS

models (see appendix A). To illustrate the convention dependencies we give their formulae

for n = 1 so as to compare to RS, in which case their formulae reduce to M̃3
P /16π and

M̃3
D/4π, which should be compared to M̃3/2, which is the RS convention, where the tilde

indicates the warped version of the various Planck scales. Although just conventions, it is

important to bear these conventions in mind when interpreting results.

The Schwarzschild radius of the black hole given in [15] for the (4 + n)-dimensional

case is

rS =

(

MBHΓ
(

n+3
2

)

LN (n+ 2)2π
n+3

2

)
1

n+1

(2.4)

1The effective scaling of the PDFs can be summarized in terms of a parton luminosity. See for instance

figure 69 of [14]. The drop in the parton luminosity at the LHC depends on the mass range of interest,

for instance for qq and
√

ŝ ∼ 1 − 2TeV the luminosity drops off approximately as ∼ 1/ŝ while for higher

invariant mass it can drop off as ∼ 1/ŝ4.
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where the scale is understood to be appropriately warped in the RS case (for details see

the appendix), which reduces to
(

MBH

LN6π2

)1/2

(2.5)

for the case of n = 1. Using the RS normalization of the action we find that the

Schwarzschild radius in RS1 is given by

rS =

(

MBH

M̃33π2

)1/2

. (2.6)

For the case of one extra dimensions, the DL and PDG conventions would give

rDL
S =

(

8MBH

M3
P 3π

)1/2

rpdg
S =

(

2MBH

M3
D3π

)1/2

(2.7)

where MP and MD are the higher-dimensional Planck scales in the two cases.

Although just a convention, the numerical relationships mean that if we take rS ∼
1/M as the threshold for black hole production, comparing the two formulations of the

Schwarzschild radius in the case of [2] we would find that black holes would be produced

at energies ∼ MP , while in [18] black holes would be produced at a scale of ∼ 41/3 ∼
1.6MD while the convention would yield (8π)1/3M̃ ∼ 2.9M̃ . These conventions are clearly

significant in interpreting the meaning of the black hole energy reach for the LHC and

comparing to experimental constraints. Of course the physical answers are not convention

dependent. When we compare the scales relative to threshold production to the current

experimental bounds on KK masses, the convention dependence drops out.

The real question is the black hole threshold where black holes start to form. Of course

at center of mass energies much greater than the higher-dimensional Planck scale, M , we

know black holes will be produced. However, the precise threshold is ambiguous. M is

after all convention dependent. Though we will assume E > M is necessary, it is clearly

not sufficient.

Since we don’t know the precise threshold for a truly thermal black hole, it is useful

to define a parameter xmin that tells how far above the relevant Planck scale the semi-

classical prediction applies [3]. This could be defined relative to an arbitrary threshold

mass or relative to the convention-dependent Planck scale. We will use the latter with the

understanding that xmin is unknown either way and is simply a parameter. In our analysis

we will give results as a function of M and xmin. We consider criteria for xmin below.

Note that we would want xmin for RS to be less than (M/k)2 where the curvature becomes

relevant as outlined in appendix A.

Keep in mind that in addition to significantly reducing the black hole production cross

section, the existence of a nontrivial xmin obscures our ability to extract fundamental

parameters from the black hole cross section. The overall cross section depends very

strongly on xmin since as we have already noted, the rapid fall-off of the PDFs makes

us very sensitive to the mass threshold where black hole production can begin. This means

that any potential bounds from an LHC experiment on black hole production rates is only
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indirectly related to the fundamental scale of quantum gravity. For instance if one finds

an excess of events attributed to black hole it is unclear how to translate back to the scale

M involved if one is only looking on the tail of a distribution.

Without knowing more about the threshold behavior of black hole production, the

dependence of the cross section on the fundamental Planck scale is insufficient to extract

that parameter, which can be mimicked by an alternate choice of xmin. In principle, the

energy-dependence of the cross section can be useful in extracting the number of dimen-

sions (if we know the PDFs sufficiently accurately), although in practice this will be very

challenging. In any case, this slope won’t determine the higher-dimensional Planck scale.

In principle, the differential cross section can be used to extract the Planck scale since, once

it has turned on, the cross section depends on black hole mass (not xmin). But without

the energy-dependent inelasticity factor (see below) this will be impossible. Furthermore,

uncertainties in PDFs and the experimental determination of energy scale will also make

this unlikely.

2.2 Thermality

Although difficult to quantify precisely, we now consider several possible criteria for the

formation of a truly thermal black hole. Though not sufficient, we expect these to be some

minimum necessary criteria that will give some sense of what xmin should be.

The first criterion one might apply is that the Compton wavelength of the colliding

particle of energy E/2 lies within the Schwarzschild radius for a black hole of given energy

E. If we define the threshold as the point where a wave with wavelength 4π/E lies within

the Schwarzschild radius for a black hole of mass E, we find for ADD n = 6 black holes

this yields xmin > 4.1 (in the MD convention). Had we simply required rS > 1/E, we

would have the weaker criterion xmin > 0.44. In the RS case, we find with the stronger

criterion that x > 16, whereas with the weaker criterion it should be greater than about 3.

We see that this criterion in and of itself if fairly strong, and already will make black hole

production very small or nonexistent given LHC parameters.

Even so, the above criterion is not necessarily sufficient to guarantee a black hole since

we don’t expect the semiclassical formula to apply at the threshold determined above. For

a black hole to be truly thermal, we expect higher entropy is required and therefore the

threshold will be above the energy we just considered. There are several additional criteria

that we would want to be satisfied, all roughly amounting to the fact that the black hole

should be sizable enough that the entropy is large. Although for sufficiently large black

holes, any criteria of the sort below will be amply satisfied, as we have emphasized, the

falling PDFs tell us production is dominated by near-threshold objects.

For the criteria below, the following formula will prove useful. For n extra dimensions

we have

rS =
1 + n

4πT
=
k(n)

MD

(

MBH

MD

)
1

1+n

, (2.8)
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where

k(n) =

(

2nπ
n−3

2
Γ
(

n+3
2

)

2 + n

)
1

1+n

(2.9)

S =
1 + n

2 + n

MBH

TBH
(2.10)

It is also useful to consider the average number of particles assuming the decay is

mostly on the brane [19]. The prediction for black hole decays in experiments have been

approached in a couple of ways, including treating the decay as instantaneous [2], evolving

with mass [18, 20], and sometimes including the appropriate grey body factors for the

extra-dimensional black holes as well. These distinctions have an order one impact on the

average number of particles comparing for instance to an instantaneous decay calculation

with

〈N〉 =

(

2
√
π

n+ 1

)(

MBH

MP

)(n+2)/(n+1) (8Γ((n + 3)/2)

2 + n

)1/(n+1)

(2.11)

compared to one that evolved the black hole with mass and included greybody factors

〈N〉 = ρS0 = ρ

(

4πk(n)

2 + n

)(n+2)/(n+1) (MBH

MD

)(n+2)/(n+1)

. (2.12)

Allowing for the difference in the definitions of the Planck scales, the instantaneous decay

gives particle number a factor of 1.44 times that calculated by decaying over time. The

mass scaling is in accordance with the mass-dependence of the entropy.

For the specific cases we will be interested we list the average number of particles

emitted for ADD n = 6

〈N〉 ∼ 4πρk(6)

8

(

MBH

MD

)
8
7

(2.13)

with

ρ =

∑

cigiΓiζ(3)Γ(3)
∑

cifiΦiζ(4)Γ(4)
(2.14)

which defines a ratio of multiplicities and greybody factors defined in [18]. For RS n = 12

we find

〈N〉 ∼ 4ρ

3
√

3

(

MBH

M̃

)
3
2

(2.15)

Notice that 〈N〉 = ρS.

In what follows below, we will use the grey-body corrected time-dependent decay

estimate. Of course, near threshold, all these formulae are unreliable but give an idea of

what one might expect.

• Preskill et al [21] give the criterion |∂T/∂M | ≪ 1, which is equivalent to the change in

Hawking temperature per particle emission should be small. This condition is equiv-

alent to the entropy (2.10) being large. More specifically, ∂T/∂M ∼ 1/((n + 2)S).

2We approximate the greybody factor for n = 1 as the same as that for n = 6
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The improvement of this bound scales as x
2+n
1+n

min . This is not as strong a constraint as

the other criteria we give below, for RS and ADD the constraint is satisfied already

in both cases for xmin = 1

• We would also want the energy of any individual degree of freedom in a thermal bath

to be much less than the black hole mass. This gives the criterion (n + 3)T < M

or equivalently dM/dN ≪ M -that is, any one individual degree of freedom should

not carry a significant fraction of the energy. This particular criterion is satisfied in

ADD and RS for xmin & 2. This condition is slightly subtle in the case when brane

black hole decays are allowed, since the energy per degree of freedom for modes on

the brane is reduced by roughly a factor of 3/(3 +n) since brane modes can oscillate

only along the brane directions.

You can also see this directly from the formulae for the rate of change of energy

and number of particles when decaying into thermal d-dimensional states. In the

former case, the decay rate is determined by
∫

ddkf(E)E, whereas in the latter case

it is determined by
∫

ddkf(E), where f(E) is the Boltzmann factor. The resulting

ratio whose inverse determines particle number is proportional to dξ(d + 1)/ξ(d),

which is approximately d. That is, for decays into more dimensions (fixing T ), we

have fewer particles since each particle carries more energy. Even if the bulk modes

don’t dominate the decay, we would still not want any single bulk mode to carry a

significant fraction of the black hole energy if we are to interpret the decaying object

as a higher-dimensional black hole.

This is a stricter criterion than above. We find one bulk degree of freedom carries

almost all the energy when MBH ∼ 3M̃ in the case of RS, and slightly exceeds it in

the case of ADD MBH ∼ 2MD(n = 6). Clearly we would want MBH > M in both

cases as the bound improves as x
(2+n)/(1+n)
min , again scaling as the entropy.

Of course we should keep in mind this is the criterion for one degree of freedom in

the bulk to carry all the mass. Clearly for a thermal black hole, we would want

many particles carrying the energy, so the bound would be much stronger. For

example, the maximum experimental reach on xmin for ADD n = 6 is about 6, which

would correspond to only 3 bulk particles! For RS, the maximum xmin is about 10,

corresponding to at most about 5 or 6 particles sharing the energy, which also seems

inadequate for a truly thermal state.

• We want the black hole lifetime to be bigger than 1/M , so that the black hole appears

as a resonance [3]. This criterion scales roughly as the number of degrees of freedom

modified by grey-body factors. This is borderline for n = 6 and reasonably well

satisfied for n = 1. For completeness we give the formula for the lifetime in ADD:

τ =
(4π)4k(n)2M

−2(2+n)
1+n

D M
3+n
1+n

BH

α(1 + n)3(3 + n)
(2.16)

α =
1

2π

(

∑

cifiΦi

)

ζ(4)Γ(4) (2.17)
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Figure 2: Possible criteria for xmin plotted as a function of xmin. ADD with n=6 is plotted on the

left and RS is plotted on the right.

where the factors in α are defined in [18], and correspond to multiplicities and grey-

body factors. For the specific case of n = 6 we find

τ = .7
x

9/7
min

MD
. (2.18)

In RS we can find 〈N〉 from (2.16) by substituting n = 1, and replacing MD with M̃

and k(1) with 1/3π2 to account for the RS normalization. The result of this is that

in RS the lifetime is given by

τ = .38
x2

min

M̃
. (2.19)

Using these criteria we find that in ADD the criteria is satisfied for xmin ∼ 1.3 and

in RS for xmin ∼ 1.6.

• A sometimes stricter criterion in the case of black holes that can decay on the brane

is that the lifetime should exceed the black hole radius, so that the black hole can

reequilibrate as the black hole decays primarily along the brane. This requires in the

ADD case that x & 3 while for RS the constraint is satisfied for any xmin.

• The black hole’s mass should be large compared to the 3-brane tension. We leave

this criterion open since it is highly model-dependent.

The strongest criteria are plotted in figure 2 as a function of xmin (with the exception

of Schwarschild vs. Compton wavelength which would just be a vertical line) where the

ratios are chosen such that every curve plotted should be greater than one if the criteria is

satisfied. These criteria highlight the uncertainty in defining a precise threshold, and also

indicate the blackhole threshold might be well above the putative Planck scale. We stress

here that even though the various criteria might be satisfied for xmin & 3 or 4 (except

for the wavelength criterion), all these criteria are should really be held to being ≫ 1 not

just ∼ 1 in which case xmin should be much larger in principle. They also show that the

values of xmin that were used in previous analyses [3, 18] might be too low to trust to be in

the thermal regime (and of course brings into question those analyses that neglected xmin

entirely). As we will see however, higher values of xmin yield too low a production rate to

appear at the LHC.
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Figure 3: From figure 10 of [26]. The ratio of the mass of the putative black hole compared to

the initial energy of the collision is plotted as a function of the impact parameter divided by a

unit r0 that approximates the Schwarzschild radius if all the energy of the initial collision were to

end up as a black hole. The lowest curve represents the calculation of [26], and previous estimates

from [24, 25] are also included.

2.3 Inelasticity

In addition to the thermality criteria above that raise the black hole energy threshold,

another critical effect is energy loss of the colliding partons before their energy is trapped

behind a black hole horizon. One of the most important effects is to understand exactly

how much energy of the initial parton parton system ends up going into the mass of the

intermediate black hole. We can define an inelasticity parameter as in [18] y ≡ MBH/
√
ŝ

which when less than 1 requires probing the PDFs at larger x and thus reducing the cross

section possibly by many orders of magnitude compared to initial estimates.3

The program of calculating this inelasticity goes back to unpublished work of Penrose

and the work of D’eath and Payne [22, 23], who examined in four dimensions and zero

impact parameter, the fraction of energy emitted in gravitational waves when colliding to

Aichelburg-Sexl shock waves representing two highly boosted massless particles. This work

was extended to extra dimensions and non-zero impact parameters by the seminal work of

Eardley and Giddings [24] and then further refined by [25, 26]. In figure 3 we present the

relevant results of [26], for the ratio of the mass trapped in the apparent horizon compared

to initial energy as a function of the impact parameter for a 10 dimensional black hole

(hereafter referred to as ADD) and 5 dimensional black hole (hereafter referred to as RS)

which are relevant for our discussion.

As one can see from figure 3 the largest energy fraction entering the black hole for both

ADD and RS is O(.6) occurring for zero impact parameter. However they have different

functional dependencies with respect to the impact parameter, and the ADD fraction goes

3There are other effects that modify the cross section, i.e. the maximum impact parameter that can still

create a black hole in comparison to the Schwarzschild radius and O(1) factors in front of the putative cross

section σ ≈ πr2
S however for the LHC these effects are not nearly as crucial as the actual mass scale that

defines the black hole production.
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Figure 4: Total black hole cross section in femtobarns, including(solid curves) and not includ-

ing(dashed) inelasticity as a function of MD for ADD with n = 6 and M̃ for RS1. The different

curves from highest to lowest correspond to xmin = 1 − 6.

down to y ≈ 0 while RS goes to about y ≈ .2 at the largest possible impact parameters

where an apparent horizon still forms. These estimates are interpreted as lower bounds on

the inelasticity but we stress that they are also calculated classically and for energies that

are approaching the Planck scale it is not obvious how this will be modified.

To quantitatively include this inelasticity, we need to include the impact parameter

dependent effect of inelasticity in calculating the black hole production cross section. Im-

plicitly when calculating the cross section of a proton proton event we have summed over

the possible impact parameter already when using the parton parton cross section

σ(pp→ X) =
∑

i,j

∫

dx1dx2fi(x1)fj(x2)σ(ij → X). (2.20)

To include the effects of inelasticity we adopt the impact parameter weighted average of

the inelasticity used in [18]

σ(pp → BH) ≡
∑

i,j

∫ 1

0
2zdz

∫ 1

(xminMD)2

y(z)2s

du

∫ 1

u

dv

v
fi(v,Q)fj(u/v,Q)σi,j→BH(MBH = us),

(2.21)

with z = b/bmax. The function y(z) is given in our case by the results of [26], as shown in

figure 3. This weighting of the impact parameter obviously shows a difference between the

RS and ADD cases, because in 10 dimensions the inelasticity parameter is smaller at order

one impact parameters, meaning relatively higher energy will be needed to make a black

hole. The total black hole cross section with and without inelasticity for both ADD and

RS is shown in figure 4. As demonstrated in figure 4 the inclusion of inelasticity can reduce

the total cross section by several orders of magnitude, which is consistent with the results

of [18] who used [25] to define their inelasticity. It is interesting to note that these effects

are more important for ADD than RS in terms of reduction of total cross section, as it is

interesting that the inelasticity is higher for lower dimensions. While the rates presented in

figure 4 for the inclusion of inelasticity are taken as a lower bound for the black hole cross

section, one should keep in mind that xmin lower than the criteria presented in section 2.1
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have been plotted and it is unclear what the “effective” inelasticity will be when quantum

gravity effects are taken into account.

3. Black hole decays

In the previous sections we have argued that it is unlikely that the LHC will produce

thermal black holes, since the thermality criteria require a black hole threshold above the

putative higher-dimensional Planck scale and furthermore energy is lost through initial

radiation. In this section we go a step further and argue that even if black holes were pro-

duced, they are rarely if ever in a regime where they will produce the “fireball” explosions

consisting of a high multiplicity isotropic distribution of particles that are the most highly

emphasized [2, 3] black hole signature and possibly even revealing the negative specific

heat that characterizes black holes.

Since this signature relies on high multiplicity events, it is worth checking over what

parameter range one expects to find high multiplicities. Although not necessarily reliable

for low multiplicities, we quantify this consideration by exploring the average number of

particles assuming standard classical black holes with a thermal distribution of final state

particles obeying Poisson statistics [18, 27] to determine the fluctuation about this mean

value. The point is to show the relative merits of low and high multiplicity states. We use

as a target “high multiplicity” six or more particles. Although far from a fireball, we are

trying to allow the most optimistic assumption for a multiparticle state. We compare this

reach to two body final states in the figures below.

In figure 5 we plot the cross sections with and without inelasticity for both 6 or more

particles(multiparticle) and 2 particles. To summarize and better demonstrate the relative

potential strengths of multiparticle vs. two particle final states we plot in figure 6 the

region in parameter space for the multiparticle and 2 particle final states with a .1 fb cross

section.

We see that the “reach”4 of two particle final states is in all cases at least as good

as the multiparticle final state. Therefore a study of low multiplicity final states might

explore black hole-like objects even when xmin is not high enough to guarantee a thermal

final state or a black hole.

To be as optimistic as possible, we also checked for the maximum number of particles

assuming a .1 fb cross section according to a Poisson distribution for a given M̃ [MD] where

we looked for the maximum number of particles with that cross section. The maximum

particle number in the RS case with a .1 fb cross section was on the order of 20 for M̃ =

500 GeV and is about 9 for M̃ = 1 TeV , and is only 6 for M̃ of 1.5 TeV. The maximum

particle number in the ADD case for MD = 900 GeV was about 20, for 1.4 TeV was about

14, and for 1.9 TeV was about 10. Although the later case might sound adequate, it should

be kept in mind that this number depends on decays onto the brane. If we asked about

4Here we are defining reach as just a possible observation of signal assuming the background is non-

existent. This is not meant to be a statistically significant reach; nevertheless it gives one the potential reach

if backgrounds are under control. In the next section for the two particle states we will show backgrounds

in the 2 particle state.
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Figure 5: In the upper plots curves of total cross section for having 6 or more particles, includ-

ing(solid curves) and not including(dashed) inelasticity as a function of MD for ADD with n = 6

and M̃ for RS1. The different curves from highest to lowest correspond to xmin = 1 − 6. In the

lower plots the same curves are plotted for having 2 particles instead of 6 or more.
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3
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Figure 6: Curves of constant .1 femtobarn cross section including the effects of inelasticity and a

probability for getting either 2 particles(thicker curve) or greater than 6 particles(thin curve). In

the left hand panel the curves are for ADD with 6 extra dimensions and are plotted as a function

of xmin ≡ MBH/MD and MD. In the right hand panel the curves are for RS1 as a function of

xmin ≡MBH/M̃ and M̃ .

the distribution of energy among thermal bulk particles, that is how many bulk particles

would we expect for this sized black hole, the answer would be divided by 3. And this was
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for the best possible cases. So the black hole signature is not likely to be an isotropic burst

of a large number of particles. Instead we expect low multiplicity final states to dominate.

Given the relative weakness of the muliparticle final states the likely black hole signa-

ture will not be an isotropic burst of a large number of particles. Instead we expect low

multiplicity final states to dominate. We consider the consequences of this conclusion in

the next section.

4. Two body final states

Examining the formulae for the average number of particles emitted in the decays (2.13)

and (2.14), we see that for RS only for MBH > 4M̃ is the average number of particles

emitted greater than 2, and for ADD you need MBH > 1.5MD. Clearly for xmin satisfying

the criteria we’ve listed this is not a problem. But it makes manifest that for low xmin

our “black holes” decay into only a small number of particles. However, even if the decay

is not a true thermal black hole, some interesting new signature is likely to appear and

could be a valuable indicator of strong gravity effects-one whose reach in almost all cases

is comparable to or exceeding the reach of the multiparticle final states.

We now consider the implications of black holes, or other quantum gravity effects,

for 2→2 scattering processes. Whether or not true black holes appear at center of mass

energies of order the Planck mass, we expect that true or virtual black holes or simply strong

gravity effects will lead to an increase in the 2→2 production cross section as we approach

the Planck scale, as can be seen from the large cross sections in the previous section.

Later on when we include backgrounds this increase will become even more manifest. In

practice, because the calculation is inherently nonperturbative in this regime, we cannot

precisely calculate the scattering. However, by considering a few examples we show that

under reasonable assumptions we can gain insight into quantum gravity by studying these

processes.

In principle exception to enhanced two-body production might be weakly coupled

string theory. But in this case we would see the string states or other effects (see below)

well before the black hole scale, which in any case would be out of reach (since it is of order

MS/g
2
s [28]).

So rather than explore only the tail of black hole distributions where multiparticle

states could dominate, we examine the Planckian “black holes” (by which we mean any

quantum gravity effect or resonance) where MBH ∼M . Given the PDF fall offs at the LHC

and the flux limitation of UHECR experiments black holes will be dominantly produced at

the lowest mass available to them in any foreseeable experimental setting that they could

be potentially produced in. Taking into account inelasticity amongst other effects we don’t

expect high mass black holes, and one really needs to explore as low of mass “black holes”

as possible within the context of the most quantitative statements that can be made.

Furthermore, we have seen by considering the maximum particle number that even

under the most optimistic assumptions on scales and threshold, we are unlikely to create

truly thermal high multiplicity black holes but instead low multiplicity states.
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The most dramatic two body final state signature one might hope to find would be

one that violates global quantum numbers, such as µ,e. However, since this physics occurs

at the TeV scale, there are already strong constraints since turning around such a process

would presumably permit flavor-changing lepton decays for example. This might occur

through virtual black hole exchange or directly through the dangerous TeV-scale physics.

The latter could be suppressed if there are effectively large anomalous dimensions — that

is the operator turns on only at high energies. The former could be suppressed since we

don’t understand virtual black holes. But we conservatively assume that there is either

separation of particles in the higher dimensions or a spontaneously broken gauge symmetry

so that such dramatic final states will not occur. Of course if they are seen, we would have

to rethink the loopholes to check whether such events could arise from black holes.

However, even if black holes don’t provide dramatic global quantum number-violating

decays, we expect an observable signal. We focus first on the two jet signal, but we will also

show that the two lepton final state can be very helpful in distinguishing among quantum

gravity models. One reason we first focus on the jet final state is that we don’t know how

gauge charge is shed. Since the dominant parton initial state will be quark-quark or gluon-

gluon or gluon-quark, we need to know how gauge charge flows. If it is shed in soft quark

or gluons from the initial partons, a neutral black hole could be produced in which case

the two jet final state would be expected at about ten times the rate for leptons, though

the lepton background is smaller so more detailed studies of leptons can be performed even

with lower cross section. However, if the initial state carries gauge charge (remember we

are dealing with low entropy black holes that decay instantaneously), we would expect a

two jet but not a lepton final state.

However, even though the cross section might increase over that of the Standard Model,

it might appear that finding black holes or even effects of strong gravity will be difficult if

they are only revealed in two body final states since the two jet background would have to be

rather precisely predicted. We show that because the jets will have a much more transverse

distribution than QCD background, which is dominated by t-channel exchange, the new

events would be readily distinguishable. In fact, this difference in angular distribution is a

feature of any contact operator due to strong interactions. Because we are not yet safely

in the classical gravity regime, we will also consider the possible interpretation of black

hole and strong gravity effects in terms of higher-dimensional contact terms generated

by strong dynamics. We now exploit this similarity to suggest a new way to search for

interesting effects from quantum gravity. This 2 body final state is interesting since there

is almost certainly a bigger reach than for multibody final states which are in any case very

unlikely to be thermal and because this is truly the quantum gravity regime where classical

predictions don’t apply. Although we can’t predict the results from first principles, the

measurements at the LHC can in principle distinguish different models of quantum gravity

as we demonstrate below.

With QCD, the 2→2 scattering cross section at high energies is very forward peaked

because of t-channel gluon exchange. When looking for new physics, it is therefore useful to

look at both dσ/dM and the angular distribution of the decay products. To optimize the

search for deviations from the standard model, it is useful to define a quantity Rη [29], which
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is the ratio of the number of events with pseudorapidity between 0 and 0.5 divided by that

for pseudorapidity between 0.5 and 1.0. Rη ≡ Nevents(0 < |η|) < .5)/Nevents(.5 < |η|) < 1)

Deviations from the asymptotic QCD value of 0.6 would indicate new physics. The quantity

Rη is useful because in measuring dσ/dM there are a great deal of systematic uncertainties

coming from for instance understanding the jet energy, resolution etc, which means that

in searching for new physics such as compositeness in dijets dσ/dM is not necessarily a

reliable quantity. However in the ratio Rη most systematic effects cancel and thus the error

is reduced to being essentially statistical only. The variable Rη which originally was used

at D0 [29] has thus been carried over for LHC studies at CMS [30].

We will use this description to interpolate between a notion of some new strongly

coupled physics prior to true thermal black hole formation compared to just a sharp turn on

of classical black hole production. Clearly the two body final state cross section is enhanced

by strong gravitational effects, even before we reach the true black hole threshold.

In fact, virtual black holes are only one type of quantum gravity effect that might lead

to changes in the 2→2 scattering cross section. We now list some possibilities, consider

constraints in the following section, and how experiment might distinguish among the

possibilities in the sections that follow.

We will also consider the role that lepton final states can play in distinguishing among

possibilities.

4.1 Quantum gravity and 2→2 scattering

No matter what the theory of quantum gravity, the 2→2 scattering cross section might

well be the first clue of low-scale quantum gravity and can furthermore yield insight into

quantum gravity behavior. Our point is not that any one of the behaviors we consider

necessarily applies but that we should be able to experimentally distinguish among them

according to the differential cross section and angular distribution of both jet and leptonic

final states. There is a great deal of physics that can be done with dijet final states that

has been largely neglected up to now. We now consider several possibilities.

Even knowing nothing a priori about quantum gravity it is difficult to imagine no

enhancement of the two body final state cross section at scales close to those at which the

black hole cross section turns on. If a string theory description does not apply, one might

expect a particle description does. The only way to avoid two body final states would be an

instantaneous decay into some minimum number of particles. But if we describe the decay

through a higher dimension operator as might be appropriate in a particle description, it

is clear that the operator coefficient would be so enhanced that even closing off the final

states through loops to make a two particle final state, there would still be a sizable decay

into two body final states. If a weak string description applies, we expect effects of the

sort we soon consider. If, however, string theory is strongly coupled, we cannot predict

the behavior but can again see what experiment might tell us. In this case it is reasonable

to expect that 2→2 processes are enhanced as we approach the black hole scale, where

we mean the scale at which strongly interacting gravity gives rise to truly thermal black

holes. At smaller energies it is reasonable to expect hard scatterings due to multigraviton

exchange.
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Our discussion of two body final states as an indication of black hole production

contrasts with ref. [5], which argues that the 2-body final state is diminished when high

multiplicity final states dominate black hole decay. We do not dispute this conclusion

applies at high energy, but point out we expect a range of energy at or about the Planck

scale for which the two body final state dominates and increases the 2→2 cross section over

that of the Standard Model.

4.1.1 Dijet “black holes”

According to black hole formulae, we expect an increase in the 2→2 cross section near the

black hole threshold. Of course, eventually multiparticle states would dominate as black

holes are produced at sufficiently high energy, cutting off the 2 body final state [5]. But

sufficiently close to threshold we don’t expect this to happen. Even though the classical

formula does not apply and we don’t truly expect a black hole, we expect enhancement of

2→2 that we model according to the black hole cross section near threshold. This gives

σ(
√
ŝ > xminM) ≈ πr2SP2 (4.1)

P2 = e−〈N〉
2
∑

i=0

〈N〉i
i!

(4.2)

Note that other authors [3] treat the final decay as a 4 stage process, with balding,

spindown, Hawking radiation, and the final explosion. In practice however the existing

black hole generators [31 – 33] only incorporate hawking radiation and the final evaporation.

Our point of view is that “black holes” produced near threshold decay instantaneously,

where the average number of particles can be approximated by a Poisson distribution [27,

18]. Note that the most recent black hole generators [31, 32] always have at least two

particles in the final state of the decay (unless a remnant is postulated as an option as in [31]

a possibility we think unlikely given the results of [34]), so they will never have the two body

final states we are looking at unless Hawking evaporation is entirely absent ([33] leaves this

as a parameter and can potentially examine 2 body final states). The probability for 〈N〉
we assign, which is computed assuming Hawking radiation and a Poisson distribution, is

probably not accurate. Nevertheless it is a rough approximation to the real probability of

a 2 → 2 process that we expect to occur and in some sense a conservative estimate since

we do not demand that the probability is 1 for low energies.

We note that we don’t know how to treat interference since we are in a nonperturbative

regime. In our results below, we simply add the Standard Model and black hole cross

sections.

Note the distinctive features of this model visible in figure 7. First of all, we see that

the cross section turns on suddenly. Of course this is a consequence of our approximation

of sudden turn on at threshold but even allowing for some smoothing we would expect a

more dramatic rise in cross section than with higher dimension operators for example as

we will show below. The rapid rise would be expected if the black hole is a resonance, or a

convolution of a continuum of resonances that might occur near the quantum gravity scale.

This rapid rise in cross section is mimicked in the parameter Rη which measures the

angular distribution. We would see the QCD value of 0.6 suddenly jump to a larger
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Figure 7: In the upper plots dσ/dMjj(units of pb/GeV) vs Mjj(TeV ) is plotted for the case of

SM QCD background, and a n=6 ADD model “black hole” behavior with MD=1,2,3,4TeV and

xmin = 1 in the lefthand plot and a RS1 black hole behavior with M̃ = 1, 2, 3, 4TeV and xmin = 1

in the righthand plot. For other values of xmin the curves simply start at the corresponding dijet

mass. In the lower two plots the Rη is plotted for the same parameters.

value, indicative of a much more transverse distribution. As expected, the two jets due to

black holes are far more transverse than the QCD background. The more rapid deviation

from QCD could help distinguish black-hole type behavior from other strongly interacting

physics. Of course, this rapid turn on was based on our assumption that the black hole

event rate takes over at xmin = 1 (here we mean just our 2 body final state and not the true

thermal black hole). In reality, we expect a smoother interpolating behavior. Nonetheless,

it would be very bizarre strong physics other than gravitational that would have a sudden

(or even smoothed out) jump at higher energies. One would need a model of strongly

interacting physics that turns on in the UV but whose effects disappear in the IR.

The apparently discontinuous jump in Rη reflects the fact that when the “black hole”

cross section turns on it dominates QCD and there is no interference. If one were to

extrapolate below xmin = 1 to the regime where interference effects could potentially be

visible one finds a different behavior as seen in figure 8. In figure 8 with no xmin value

chosen, one sees that at high energies various values of M̃ [MD] look identical whereas there

is a difference at low dijet masses. This is because even including SM processes black holes

dominate at high energies and the angular dependence is that of an isotropic distribution

governed by the PDFs. At low dijet masses if there were interference with the black hole

– 18 –



J
H
E
P
0
5
(
2
0
0
8
)
0
0
3

1 2 3 4 5

0.5

1

1.5

2

2.5

1 2 3 4 5

0.5

1

1.5

2

2.5

Figure 8: In the upper plots dσ/dMjj(units of pb/GeV) vs Mjj(TeV ) is plotted for the case of SM

QCD background, and a n=6 ADD model “black hole” behavior with MD=1,2TeV and xmin = 1 in

the lefthand plot and a RS1 black hole behavior with M̃ = 1, 2TeV and xmin = 1 in the righthand

plot. For other values of xmin the curves simply start at the corresponding dijet mass. In the lower

two plots the Rη is plotted for the same parameters.

cross section (4.1) QCD is competitive and one can see the different scaling of E/M̃ [MD]

for different choices of the Planck scale.

4.1.2 Stringy behavior

We have so far assumed the string coupling is of order unity and that black hole like

behavior will appear without any obvious signs of a string theory regime. However, if the

string scale is low and the coupling is weak, string theory could give rise to resonances that

would change the differential cross section and Rη.

In the case of weakly coupled string theory it is well known that above the string scale,

the two body final state is reduced exponentially at any large transverse angle. In practice,

we expect power law suppression for values of g that are not too small since for sufficiently

high genus the loop string contribution will no longer be exponentially suppressed [35] (the

behavior is of the form g2GsG+1e−s/(G+1)f(c), where f(c) gives the dependence on angle).

Nonetheless, we do expect a dip at high energies that we will explore.

Given a string realization of higher dimensional gravity, be it ADD or RS, there could

be additionally a regime of string ball production [36] between the scales Ms/gs and Ms/g
2
s

at which point black holes start to be produced in light of the BH string correspondence [28].

The cross section for string ball production are interesting in and of itself [36], but one

only gets a parametric separation of the black hole and string ball scales when looking at

a weakly coupled string theory, which is probably not the case for RS in the IR. With an

O(1) string coupling, all the scales would be about the same and one goes directly in BH

production above the scale M . In any case, string balls are relevant only in the weakly

coupled regime where black holes would be out of reach.

We now consider string resonances. These resonances, even if too wide to be seen

explicitly in the cross section, will also affect the angular distribution and lead to a rise at

energies of order the string scale. So probing the ratio Rη can give a detailed exploration
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Figure 9: In the upper plots dσ/dMjj(units of pb/GeV) vs Mjj(TeV ) is plotted for the case of

SM QCD background(thicker curve), and a toy stringy behavior with Ms=1TeV in the lefthand

plot with γ = .1, .3 and Ms=3TeV in the righthand plot with γ = .1, .3, .6. In the lower two plots

the Rη is plotted for the same parameters.

of a weakly coupled string theory.

We now assume a model in which the Standard Model 2→2 cross section is modified

by a Veneziano-amplitude-motivated form factor:

App→jj ≡ ASMAST (4.3)

AST ≡
Γ
(

1 − s
M2

S

(1 + iγ)
)

Γ
(

1 − t
M2

S

(1 + iγ)
)

Γ
(

1 − s
M2

S

(1 + iγ) − t
M2

S

(1 + iγ)
) (4.4)

yielding the results for the differential cross section and Rη shown in figure 9.

We see the characteristic string behavior. First of all we see several resonances appear

at about the string scale. Furthermore, we see the 2→2 cross section decrease in the region

of η we have considered. But the most notable and characteristic feature of string behavior

would be the much less transverse behavior of the 2→2 cross section (exactly the opposite of

what we considered with black holes in the previous subsection). We see this dramatically

illustrated in the lower plots, where R goes from the QCD value of 0.6 (or higher when

there are resonances) down to essentially 0. In figure 10 we have included statistical errors

on Rη and we see that although R is close to zero, there are enough events to trust this

value. That is, we can see the string theory dip in the regime where there are sufficiently

many events to trust the result.
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Figure 10: Rη is plotted for Ms = 1TeV and γ = .1 for the amplitude defined with (4.5) with one

sigma gaussian error bars corresponding to 1 inverse femtobarn of luminosity.
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Figure 11: In the left plot dσ/dMjj(units of pb/GeV) vs Mjj(TeV ) is plotted for the case of

SM QCD background, a toy stringy behavior with Ms=3TeV and γ = .2 and a massive colored

octet resonance(thicker curve) with mass and width chosen to mimic the differential cross section

behavior near the resonance. In the right hand plot the same curves are plotted for Rη, note the

easily discernible difference between field theory resonance and “string” theory resonance.

It is also interesting to note that this dip allows us to readily distinguish string theory

from other models with resonances, such as a colored octet resonance, as illustrated in

figure 11. Even when dσ/dM is rather similar, R reverts to the QCD value away from the

resonance for the octet but drops off for string behavior. In fact, the resonances might not

appear explicitly if they are too wide but we would still be able to ascertain the presence

of stringy physics.

Finally, we show the somewhat notable result that with both the differential cross

section and the angular distribution we can distinguish different stringy form factors.

A0
ST ≡

Γ
(

1 − s
M2

S

(1 + iγ)
)

Γ
(

1 − t
M2

S

(1 + iγ)
)

Γ
(

2 − s
M2

S

(1 + iγ) − t
M2

S

(1 + iγ)
) (4.5)

For example, with the original Veneziano amplitude (4.5), there is no angular dependence

in the first resonance. Even though there is a resonance appearing in the differential cross
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Figure 12: In the left plot dσ/dMjj(units of pb/GeV) vs Mjj(TeV ) is plotted for the case of SM

QCD background(thicker curve), and a toy stringy behavior (4.5) with Ms=3TeV and γ = .1. In

the right hand plot Rη is shown for the same parameters.

section, it doesn’t show up in Rη, as demonstrated in figure 12. This would be a clean way

to distinguish the two different forms of the Veneziano amplitude, one which appears in

supersymmetric theories (4.4) and the original amplitude (4.5).

4.1.3 Higher-dimension operators

Finally, strong gravity effects can give rise to higher dimension operators that exist well

below the gravity scale. The lowest dimension operator would of course have dimension 6

but higher dimension operators should also exist and be competitive when near the gravity

scale. The effects of these operators can in some ways resemble that of black holes-that is

lead to a rise in cross section above that of QCD and also give rise to much more transverse

events. However, there can be interesting features that would distinguish these different

contributions.

First is that the energy dependence of any particular higher-dimension operator is

distinctive, and can in principle differentiate these operators from the “black hole” con-

tribution we described and from each other. As we will see when comparing he higher

dimensional results to the figures in section 4.1.1, this distinction will be most manifest in

the low energy region where the interference terms bring out the energy dependence that

is otherwise lost in the PDFs.

The second difference is that we assumed true black hole type effects would have a

threshold at about the quantum gravity scale but have form factors that kill them at low

energy. Higher-dimension operators will by our assumption be those that survive to low

energy. Of course, it is possible that “black holes” are responsible for higher-dimension

operators that cut off at low energy (or similarly grow rapidly above a certain scale as

in [37]). In this case, they would be very much like black hole type effects already considered

and would similarly cut off at low energies.

Although all higher-dimension operators might be relevant at the LHC if the quantum

gravity scale is low, we will focus on four-fermion operators which are adequate to illustrate

our point. If the quantum gravity scale is high, it is appropriate to keep the lowest dimen-
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sion operator. If it is low, it would give a qualitative sense of the behavior of the 2→2 cross

section. The precise energy dependence can be quite different, but this would nonetheless

look similar at higher invariant mass where the operators would dominate over QCD so

interference terms would be insignificant. The current bound on the scale suppressing a

four fermion quark operator (qLγ
µq̄L)2 where q = u, d is Λ = 2.7 TeV [16] assuming a co-

efficient of 2π for the operator. CMS studies show that the mass scale that can be probed

at the 95 % C.L is Λ ∼ 15 TeV while at the 5 σ discovery level it can discover effects from

Λ ∼ 12 TeV with 10 inverse femtobarns of data.

In this regime one might also question the legitimacy of a higher dimension operator

parametrization. Over some of the energy regime we are below the scale in the denominator.

Of course the answer depends on whether there are any small coupling factors etc. We

view this as a model. If the scales are comparable higher order operators become relevant

and eventually the expansion breaks down altogether. But as the energy scale is not too

far from the denominator scale being probed, this shouldn’t be too bad a model.

To find the form of the assumed four-fermion operators, we assume that black holes

respect gauge symmetries, but not necessarily global symmetries. However, if we were

to write down arbitrary operators at the TeV scale generated by black holes then we

would immediately be ruled out by for instance proton decay and flavor bounds. Thus we

restrict the set of operators that we are interested in to the lowest dimensional operators

that preserve the good symmetries of the SM. This is of course a reasonable assumption

as we are inherently in the quantum gravity regime and whatever theory this amounts

to necessarily incorporates the symmetries of the SM if the scale of quantum gravity is

possibly near the TeV scale. This leaves us with dimension 6 operators of the form

∼ c

Λ2
Σ(f̄ γµf)2. (4.6)

Furthermore, the four fermion operator automatically accounts for overall “black hole”

spin through its Lorentz structure whereas in the black hole case one has different types

of black holes with different spins. One advantage of the four-fermion approach is that

it automatically takes into account the constraints of spacetime symmetries. The four

fermion operator automatically produces the final states allowed by Lorentz symmetries

(symmetries which are violated by the classical black hole).

In addition to black holes with different angular momentum, black holes could in

principle carry different gauge charges. Again, the four fermion operator and black hole

would account for these in different ways. In the four fermion case, it is a question of how

gauge indices are contracted. In general, for the black hole, we assume it is charge neutral

but this is not necessarily the case since charged partons might collide to form the black

hole.

As suggested above, the four-fermion operators might arise from black holes or virtual

black holes or some other nonperturbative gravity effect. Higher-dimension operators might

also arise from perturbative loop calculations as demonstrated in ref. [8] for example.

Four-fermion operators might also arise as virtual effects from string theory at energies

below the string scale. In fact, the Veneziano amplitude (4.5) includes an operator that
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would be accounted for by a four-fermion operator in its expansion (that is an operator,

with amplitude scaling as s/M2
S . However, the alternate form for the Veneziano amplitude

that arises in supersymmetric theories (4.4) does not have this term and the first higher di-

mension operator enters at dimension 8. So as we will see, exploring the energy dependence

of the differential cross section and R could distinguish these possibilities. A particular

example of modern string models with dimension 6 operators can be found in [11] which

can be compared with the dimension 8 operators found in [9, 10].

Finally, string theory can give rise to harder scattering if in warped space [39]. Whereas

perturbative string theory in flat space would cut off the 2→2 scattering amplitude, per-

turbative string theory in warped space is dual to a strongly interacting conformal field

theory that would give rise to hard scattering amplitudes. Ref. [39] discusses how in curved

space, hard QCD-like behavior is reproduced in string theory, even though the naive flat

space expectation is that it does not. Moreover Bars and Hinchliffe [41], in their analysis

of toy string models for the SSC, have noted that if a string theory acted like a QCD

string then it would not demonstrate the dip in 2 body final states characteristic of weakly

coupled string theory in flat space. Additionally taking into non-perturbative string states

as in [40] could also produce harder scattering than the naive flat space suppression of the

string scattering cross section, though for perturbative string theory this is a small effect.

Of course the precise connection between the scale in the denominator of the four-

fermion operator and MD is model dependent and in general unknown, as we will make

even clearer in the following subsection. Nonetheless, it is worthwhile looking for such

effects and distinguishing them from the other types of quantum gravity behavior we have

described.

So we consider a four-fermion operator of the form [42, 43]

1

2Λ2
QG

(ψ̄Lγ
µψL)2 (4.7)

Here we see the differential cross section and Rη scale as in figure 13. Furthermore we can

also potentially see signals in the lepton channel as will be discussed in section 4.2.

4.2 Leptonic final states

We have so far concentrated on jet final states which have the biggest cross section. How-

ever, leptonic final states can be very important as well and can be critical to distinguishing

among quantum gravity models. Leptons are generally clean enough at these high energies

that identifying new physics doesn’t necessary require studying the angular dependence.

But for a black hole or quantum gravity-related signature, we expect the same energy

dependence for the leptonic and hadronic final states.

The most interesting feature of the leptonic final state will be the relative cross sections

for leptons and quarks. The relative ratio would be different for a classical thermal decay

(for which it is about 10 %) relative to the decay due to a four fermion operator, for

example, for which the relative rate is about 20 %. In the first case, the relative rates

depend only on the number of species and the multiplicity due to spin counting whereas

in the second case the numbers depend on number of species but also on the dimension
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Figure 13: In the left panel dσ/dM(units of pb/GeV) vs Mjj(TeV) is plotted for QCD(the lowest

curve) and a set of four fermion operators with Λ = 1, 2, 4TeV. In the right panel Rη is plotted for

the same operators as well as QCD with the statistical error bars for QCD are overlaid for 1 fb−1

of data.
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Figure 14: dσ/dM(units of pb/GeV) vs two body invariant mass(TeV) is plotted for QCD(the

lowest curve) and a set of four fermion operators with Λ = 1, 2, 4TeV for dijets in the upper curves.

In the lower curves SM Drell-Yan production of leptons is plotted in combination with a four fermion

operator that generates a l+l− final state with various Λ = 1, 2, 4TeV.

of the associated field. For example, gauge bosons associated with a field strength would

be suppressed relative to fermions. Although the first operators including a field strength

arise at dimension five ψ̄ψσµνF
µν they are chirally suppressed (proportional to the light

fermion mass). Relative numbers of leptons vs quarks could also in principle depend on

whether the quarks and leptons are slightly split from each other in a higher dimension,

so a deviation from naive predictions might indicate something about the structure of the

underlying theory.

But even more important than this counting is the way charge flows. A black hole can

in principle be formed from a color charged initial state, namely two gluons or two quarks.

The leptonic fraction will then be 10 % of the total black hole two body decay rate.

The four fermion operators on the other hand would have to be qq̄ ll̄ type operators

which means that only the q and q̄ initial states will contribute. Because the PDFs for q̄
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Figure 15: dσ/dM(units of pb/GeV) vs two body invariant mass(TeV). The curves from top to

bottom represent black hole cross section for MD = 1TeV , n = 6, and xmin = 1 for a black hole

decaying into l+l− (assuming any initial gauge charge is radiated softly), black hole cross section

for MD = 1 TeV and xmin = 1 for a “charged” black hole decaying into lν, and the lowest curve is

the Drell Yan background.

are so much smaller, the relative fraction of leptonic final states will be much smaller. In

addition, the four fermion operator has an additional û/ŝ type suppression which is relevant

because we are focusing on the central region. Finally a true four fermion operator will

appear with an additional alpha because the interference dominates. The upshot is that the

leptonic contribution from four-fermion operators is down by about a factor of a thousand.

Nonetheless CMS studies show that the mass scale that can be probed at the 5 σ

level can be as large as 23 TeV for dimuons [38] and 12 TeV in dijets [30] for 10 inverse

femtobarns (where the coefficient of the operator is 2π). The current strongest bounds

from low energy experiments are 4.2 TeV for dimuons and 2.7 TeV for dijets [16]. This

means that we might hope to distinguish various possibilities through a joint measurement

of lepton and jet final states. In figure 14 we plot the Drell-Yan background and the effects

of a qq̄ ll̄ operator as well as the dijet operators from section 4.1.3 to show a comparison

of rates for several values of Λ.

Another possibility is that a black hole that will give rise to the states had to be

formed from a neutral state but didn’t have either the α or û/ŝ suppression factors. It

is also possible that a charged final state is also of interest. A u and d̄ initial state or

the charge conjugate could give rise to a charged state that can decay into lepton and

neutrino. We expect this final state to dominate above background as the neutral state

does. In figure 15, we plot these possibilities and see the significant difference in overall

rate that can be used to distinguish among possibilities.

5. Conclusions

In this paper we have argued that if the higher-dimensional gravity scale is indeed low,

we are likely to learn more and sooner about quantum gravity from studying two particle

final states than by studying multiparticle decays from higher-dimensional black holes.
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Although we haven’t precisely determined the reach, we expect in all cases to be able to

probe to scales of order 5TeV by looking at the two particle final state channels.

We find it very unlikely that the LHC will produce conventional black holes. In almost

all cases the entropy is too low to trust there is actually a black hole final state. In

particular we found even if we assume we are in the black hole regime that low multiplicity

final states dominate, and the two body final state should be particularly interesting.

We have found a number of interesting features that can be used to distinguish among

the possibilities for quantum gravity effects. We have shown that by studying both the

differential cross section and the transversality parameter Rη as a function of energy we

can identify new effects and distinguish among black hole type cross sections, perturbative

string theory, and higher dimension operators.

We have furthermore noted a number of specific points. The relative lepton fraction

can provide very valuable information. It is likely to be large only in the case that black

hole resonances that shed gauge charge form. Otherwise the parton distribution functions

suppress the rate.

Furthermore we have found that we can distinguish string resonances from other res-

onances and furthermore distinguish among different string models.

We have found that black holes and four fermion operators differ in their threshold

behavior and that furthermore by studying the threshold regime where interference is

relevant one might be able to distinguish different energy dependencies of various operators.

There are a number interesting follow up studies to consider. On the theory side, it

would be nice to consider various string models and their predictions. Although initial

work on string theory [9, 49, 11, 10] studied 2→2 scattering, it would be interesting to see

the predictions of string models which have been developed in the interim. It would also

be interesting to study threshold black hole behavior if at all possible.

Other more phenomenological studies include seeing how much information can be

gleaned from the transversality or sphericity of multibody final states. In particular, even

if there is missing energy or other jets, it might still be of interest to study the two leading

jets.

Finally a more detailed experimental analysis of how well one can distinguish among

different models would be very useful.
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A. RS black holes

We start with the convention for the RS1 normalization

M3

2

∫

d5x
√
gR (A.1)
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Figure 16: Recent D0 search results from 1 inverse femtobarn of luminosity updating the results

of [44].

which leads to the familiar relation

M2
Pl = M3/k(1 − e−2krc) (A.2)

whereMPl represents the reduced Planck mass, and rc is the size of the extra dimension. To

determine the relevant parameters for black hole production in RS1 we need to reinterpret

the commonly used parameters k/MPl and m1 (the first kk graviton mass) in terms of the

fundamental five dimensional Planck scale, M , and the AdS curvature k. The most current

available bounds on RS graviton production from the D0 experiment are given in figure 16.

For a given value of k/MPl ≡ c and m1

M̃ =
m1

x1c2/3
, (A.3)

where x1 = 3.83. Thus if we were to extend k/MPl ∼ .5 and take 1000 GeV as the

approximate bound for m1 we get M̃ ∼ 350 GeV. Choosing k/MPl ∼ .5 means that the

strong coupling scale is extremely close to k so to be somewhat more conservative we use

M̃ ∼ 500 GeV as the lower bound that we have used throughout this paper when computing

the RS black hole cross section.

We now discuss what types of black holes exist in the context of RS and their potential

phenomenological implications. Black hole solutions in Randall-Sundrum models have been

studied for both RS1 and RS2 variants [50]. In studying RS black holes in experiments the

only relevant solutions are those in RS1 where there is an IR brane with the SM localized

there. The reason for this is that in models without an IR brane the SM feels the usual

Planck scale, while in RS1 there is a warp factor that can allow for an effective Planck

scale of O(TeV) One can consider variants of this situation (see [48]for example) with light
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fermions and gluons in the bulk but this will greatly suppress the black hole production

cross section, since they can be produced only at or near the TeV brane.

For RS1 black holes there are essentially two different regimes that are relevant– unlike

flat space BHs. In flat space one can analyze black holes with Schwarzschild radius less

than the compactification radius and there is only one type of solution. In RS1 since the

bulk is warped with a scale set by the AdS curvature k, there are separate regimes when

rS ≪ 1/(ke−krc) and when rS ≥ 1/(ke−krc) where curvature is relevant. In the first case

where rS ≪ 1/(ke−krc) the black hole can be thought of as a five dimensional flat space

black hole, which means the approximate expression for the Schwarzschild radius can be

obtained by matching the RS action to the Myers-Perry solution [15] for a d-dimensional

Schwarzschild BH. Carrying out this matching one obtains

rS =

(

MBH

3π2M̃3

)1/2

, (A.4)

where M̃ is the five dimensional Planck scale. Actually it is subtle to derive this formula

since the best way of deriving it is coordinate dependent.

The simplest way to see that we expect five-dimensional RS almost flat space black

holes is to work in terms of the parameter M̃ in the first place. Since we are interested

only in the region near the TeV brane, the warp factor doesn’t even enter (until we get

to large distances) so we expect the behavior to be that of five-dimensional gravity with a

low Planck scale.

One can also directly match to the Myers-Perry solution using conformally flat coor-

dinates as in [13]. In this case starting with the metric

ds2 =
1

(kz)2
(

dz2 + dx2
µ

)

(A.5)

and performing a conformal transformation one is left with the relevant part of the effective

gravitational action at the TeV brane

M3

(

1

kz0

)3 ∫

d4xdz
√
gR = M̃3

∫

d4xdz
√
gR, (A.6)

where z0 is the location of the TeV brane in the coordinates (A.5), and 1/z0k is the warp

factor. From the form of this solution it can be easily matched to (2.3) the Myers-Perry

solution where the assumption is that the metric is asymptotically flat.

In the commonly used RS coordinates

ds2 = exp−2kydx2
µ + dy2 (A.7)

the derivation isn’t quite as obvious given that the effective action at the TeV brane is

M3e−2krc

∫

d4xdy
√
gR. (A.8)

Thus there would seemingly not be enough powers of the warp factor if we were matching

to the Myers-Perry solution to end up with a relevant black hole mass scale of M̃ . This
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should not come as a surprise though as because in looking at fluctuations about a given

position in (A.7) the metric is not manifestly 5D flat space. However one can convince

oneself that the relevant mass scale for black hole production is M̃ by computing the

effective gravitational potential at the TeV brane,

V (r) ∼ 1

M2
Pl

mamb

r
+

1

M2
Plk exp−3krc

mambe
−m1r

r2
. (A.9)

Neglecting the first term which comes from the zero mode of the graviton and is negligible

at short distances, we see that the second term approximates a five dimensional flat gravi-

tational potential for r < 1/m1. From this one can derive the approximate horizon radius

via Laplace by setting the kinetic energy equal to the potential energy (as also done for

ADD black holes in [4]) and thus we arrive at

rS ∼
(

MBH

M̃3

)1/2

, (A.10)

where we have expanded the exponential in (A.9) to the lowest order. Additionally we see

that from looking at higher order terms in the expansion we should find deviations from

this approximate form at order rS ∼ 1/k exp−krc when we expect curvature corrections

to be taken into account. Eventually when the black holes are large enough in size the

solution should change to an AdS-Schwarzschild black hole. From these various derivations

there are TeV sized approximate flat space black holes in RS1 and we assume the flat space

behavior for the relevant regimes we are interested in throughout this paper.

As in flat space the production cross section for these black holes is given roughly by

r2S and would seem to grow unbounded with energy/the mass of the BH. However in the

context of RS models we know this behavior has to be modified in some way as the black

hole size approaches the AdS curvature length. Additionally one knows that the cross

section cannot grow as a power law forever from AdS/CFT reasoning [45][]. In [45] it was

conjectured that once you made black holes with size 1/k the cross section was bounded and

never got larger than this value. However a more refined understanding of what happens

at this scale was put forth by Giddings [46], who conjectured from the gauge theory dual

side at the scale 1/k the Froissart bound is saturated and then the cross section doesn’t

cease growing but grows as ln2E. Interestingly enough Giddings was also able to show

that this behavior can be seen directly by looking for BH solutions in linearized gravity

and he found that when taking into account curvature effects rS ∼ lnE strengthening the

argument for the Froissart bound ln2E behavior.

Given the additional effects of curvature in RS1 the basic regimes for cross sections

can be summarized in the following way

E > M̃ σ ∼ E/M̃3

E >∼
(

M

k

)2

M̃ σ ∼ ln2E, (A.11)

thus demonstrating that one gets rather different results than simply a five dimensional

flat space black hole depending on the ratio M/k. In practice however this effect is small
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when M/k is large, as with QCD where you never really see the effects of the softening of

the cross section). We also see that we would want M/k to be large to approach the large

entropy regime, but this is the regime where experimental constraints are stronger.

This discussion of course ignores the possible effects of any additional scales beyond k

and M , for instance an additional scale set by Ms and gs. It is in principle possible to form

string resonances or string balls in this case as well as the truly flat case. Nevertheless as

we see from (A.11) the only really relevant parameter for RS1 “black holes” is M̃ given

that black holes will dominantly be produced at threshold due to the falling PDFs.

B. Existing constraints on the quantum gravity scale

In the text we have discussed several possible models for quantum gravity effects, including

black holes down to low energies, perturbative string theory, and higher-dimensional oper-

ators. In all cases it will be difficult to constrain the Planck scale based on nonobservation

of these effects, in the first case because of lack of knowledge of xmin, in the second case

because we don’t know the string coupling, and in the latter case, because we don’t know

how to predict a precise relationship between the Planck scale and the scale occurring in a

higher-dimensional operator.

Nevertheless, we do need to consider other searches for the types of operators and

effects we have suggested, since in principle they can rule them out over the measurable

range. In particular, Giudice, and Strumia as well as Contino et al [8, 47] considered four-

fermion operators, while [11, 9, 49, 10] considered constraints on the string scale. In both

cases, the constraints appear rather stringent and if true, would significantly impinge on

the parameter regime we have considered.

We first consider ref. [8], who demonstrate that loop effects with KK gravitons ex-

changed can generate four-fermion operators. They argued that the strong bounds on

dimension-6 operators, in particular those involving quarks and leptons, significantly con-

strain the allowed coefficients of the operator they found. The operator is clearly suppressed

by the higher-dimensional Planck scale, M2, and they chose to interpret the experimental

constraint as a constraint on the UV cutoff on the effective theory for which a loop calcula-

tion would apply. That is, string resonances or other states might enter at an energy lower

then the strong scale determined by nave dimensional analysis, and they put a constraint

on the scale Λ for various values of MD.

This analysis could have an impact on our study for several reasons. First, if the cutoff

necessarily occurs below the quantum gravity scale, we would expect 2→2 scattering to

be lower than the simple estimates we presented. Second, independently of their cutoff

procedure, if the scale of four-fermion operators is constrained to be the current bound

from LEP II on quark lepton operators, the four fermion operators we consider would

already be ruled out.

We consider the second concern first. The current strongest bound on the scale of

four-fermion operator for qqee with coefficient 4π/Λ2 is Λ = 26.4 TeV [16]. However, there

are several reasons this quark lepton bound might not apply to quantum gravity. The first

is that the four quark operator and the quark lepton operator will not necessarily occur at
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the same scale if quarks and leptons are separated in the bulk, as they might be to address

baryon number violation concerns. A second reason this operator might be suppressed is

that if the operator is generated by strong gravity, such as effects from black holes, the

operator might turn on only at high energy. Of course, this would not be a true four fermion

operator that applies to low energies but one with significant form factor suppression at

low energy. For the true four fermion operator, if it is generated by strong gravity, it could

be that the lepton contribution is suppressed relative to the quark contribution simply

because there are fewer leptons coupling to the graviton (and even fewer charged leptons).

This would not however prevent the loop contribution which is already nominally too big

for leptons. However it is possible that the operator is not as stringent as presented in

ref. [8] because the cutoff for fields on the brane is different than than in the bulk. We now

reconsider this analysis.

The scale ΛS is defined in ref. [8] as the strong scale at which the gravitational coupling,

g2 = cn(Λ/MD)2+n (where cn in their convention for the gravitational action is (2π)n) is

equal to the loop factor, (4π)D/2Γ(D/2), where D = 4 + n is the number of dimensions,

and we will divide this loop factor into the product l4ln, where l4 = 16π2. So we have

ΛS =

(

l4ln
cn

)
1

2+n

MD (B.1)

If we were to compute the box diagram with two gravitons exchanged, with the graviton

propagator, adding up all the KK contributions, taken to be

G(k, 0) =
Sn−1

2(2π)n

∫ Λ2
KK

0
dm2 (m2)n/2−1

k2 +m2
, (B.2)

where

Sn−1 =
2πn/2

Γ(n/2)
. (B.3)

Yielding the box diagram contribution [8]for the coefficient of the four fermion operator

Cγ =
15

64

c2n
l4M

4+2n
D

∫ Λ2

0
dk2k4G2(k, 0) ∼ Λ2+2n

S , (B.4)

where the scaling in the final expression comes from assuming all momenta are cut off at

ΛS .

Notice that this answer would scale as c
2/(2+n)
n /M2

D as it should for a convention

independent answer.

If the authors of ref. [8] had cut off all momenta at the scale ΛS , they would have

concluded that over a reasonable range of MD, the strong scale determined by NDA is

already excluded. They chose instead to interpret this loop contribution as implying the

effective theory must be cut off at a scale lower than ΛS .

We will interpret the four-fermion operator bound differently and assume the strong

scale Λ is a function of the convention-dependent parameter MD so we interpret the bound

directly as a bound on the scale MD. With this interpretation, we would have a strong
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constraint on the allowed values of MD given the loop contribution that Giudice and

Strumia computed.

However, in the phenomenological low scale gravity theory of interest with respect

to black hole production, the Standard Model particles are confined to a brane whereas

gravity propagates throughout the bulk (otherwise production is very suppressed but for

a scenario where black holes are investigated with matter in the bulk see [48]). The strong

scale in Ref, [8] is based on the bulk particles and isn’t necessarily the cutoff for particles

on the brane.

In fact, with the cutoff taken to be the strong scale one notices a peculiarity. Let us

consider a box diagram with two gravitons exchanged. As Giudice and Strumia point out,

you get one integral over four momentum suppressed by the phase space factor l4 = 16π2

and you get two factors of n-dimensional momenta suppressed by two factors of the n-

dimensional phase space factor ln. If we assumed nothing cut off strong coupling, one

would find a loop diagram can generate a four fermion operator with coefficient proportional

to 1/l4Λ
2+2n
S , which is in turn proportional to l

n/(2+n)
4 . That is, the answer grows with

the four-dimensional phase space factor, which is very strange from the perspective of

NDA. Generally NDA results have phase space suppression in the denominator due to loop

integrals, some of which are partially compensated by the strong scale, but never so as to

grow with the phase factor.

The resolution to this puzzle presumably has to do with the fact that we are considering

dimension six four-fermion operators in the first place. They are living only on the three

plus one dimensional surface of the brane. So although the integral is higher dimensional,

we expect that at least the additional n-dimensional momentum integral should be cutoff

in the transverse directions by the size of the brane. So an alternative NDA estimate is

obtained by factoring the phase space into the directions along the brane and the orthogonal

directions.

One then finds the result scales as

15

64

πnc2n
16π2(2π)nΓ(n/2)2

Λ2
SΛ2n

KK

M4+2n
D

(B.5)

The bound on the quantum gravity scale can be considerably relaxed when the cutoff

in the orthogonal directions is lower than ΛS since ΛKK can be smaller than ΛS . For ex-

ample, for n = 6, ΛS = 1.8MD whereas if ΛKK = M/c
1/(2+n)
n (the convention-independent

quantity) we have ΛKK = .25MD. Since ΛKK is raised to the twelfth power, this gives a con-

siderably smaller result. Similarly, with n = 1, we have ΛS = 4.9MD and ΛKK = 0.54MD .

This is raised to the fourth power, again considerably suppressing the final result. Of course

ΛKK can be bigger, but still satisfy the bound. For a strong gravity theory, even without

an explicit cutoff, we don’t know whether the gravity theory would actually apply to scales

ΛS which are bigger than MD in any case.

So we conclude that existing four fermion operator constraints are serious but do not

necessarily rule out the allowed parameter space. It is therefore worthwhile to look for

compositeness effects of the type we described.
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We now briefly turn to possible existing string bounds, which are highly model-

dependent. For example, Antoniadis [11] puts a bound on an operator scaling as gS/M
2
S

where he takes gS to be g2
YM = 0.4. With this assumption the string scale is higher than

about 3TeV.

However, this bound assumes a particular model and a particular string coupling. It

could readily change by order unity if either of these assumptions is abandoned. Further-

more, we don’t know if quark lepton operators are generated with the same or comparable

coefficients.

It should be noted that if we take weak string coupling to avoid the bound, we don’t

improve the viability of black hole searches since black holes would form at MS/g
2
s whereas

string balls would form at a scale MS/gS .
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